Optimal mixture weights in multiple importance sampling

نویسندگان

  • Hera Y. He
  • Art B. Owen
چکیده

In multiple importance sampling we combine samples from a finite list of proposal distributions. When those proposal distributions are used to create control variates, it is possible (Owen and Zhou, 2000) to bound the ratio of the resulting variance to that of the unknown best proposal distribution in our list. The minimax regret arises by taking a uniform mixture of proposals, but that is conservative when there are many components. In this paper we optimize the mixture component sampling rates to gain further efficiency. We show that the sampling variance of mixture importance sampling with control variates is jointly convex in the mixture probabilities and control variate regression coefficients. We also give a sequential importance sampling algorithm to estimate the optimal mixture from the sample data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Multiple Importance Sampling

The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of...

متن کامل

Notes on optimal approximations for importance sampling

In this manuscript, we derive optimal conditions for building function approximations that minimize variance when used as importance sampling estimators for Monte Carlo integration problems. Particularly, we study the problem of finding the optimal projection g of an integrand f onto certain classes of piecewise constant functions, in order to minimize the variance of the unbiased importance sa...

متن کامل

Adaptive importance sampling in general mixture classes

In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student...

متن کامل

Importance sampling-based approximate optimal planning and control

In this paper, we propose a sampling-based planning and optimal control method of nonlinear systems under non-differentiable constraints. Motivated by developing scalable planning algorithms, we consider the optimal motion plan to be a feedback controller that can be approximated by a weighted sum of given bases. Given this approximate optimal control formulation, our main contribution is to in...

متن کامل

Adaptive Mixture Importance Sampling

Importance sampling involves approximation of functionals (such as expectations) of a target distribution by sampling from a design distribution. In many applications, it is natural or convenient to use a design distribution which is a mixture of given distributions. One typically has wide latitude in selecting the mixing probabilities of the design distribution. Furthermore, one can reduce var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014